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We investigate the differentiation of a shock wave of an arbitrary intensity on the upper 

surface of a wedge moving at supersonic speed under the assumption that the difference 
between the intensities of the shock wave and the attached shock as well as the differ- 

ence between the wedge angle a and the angle of incidence of the shock wave d are 

both small (Fig. 1). 

The case of a flow when a plane shock wave impinges on a wedge moving at super- 
sonic speed and diffraction is absent, was dealt with in fl]. In the present paper we obtain 

conditions under which a constant parameter flow is realized in the region AFK bounded 
by the impinging shock wave, the attached shock and the wedge wall. 

Diffraction of a shock wave of arbitrary intensity on a slender wedge moving at super- 
sonic speed was dealt with in f2]. Paper [S] was concerned with the diffraction of a weak 
wave on a slender wedge moving at hypersonic speed. In addition, diffraction of a weak 
wave on an arbitrary wedge moving at supersonic speed was the theme of a Candidate’s 
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Dissertation of S. M. Ter-Minasiants entitled “Diffraction of a plane wave on a wedge 

moving at supersonic speed”, MGU, 1967. 

1. Statement of the problem, Superposition of perturbations on a constant 

parameter flow yields a diffraction pattern bounded by the shock wave AB, the shock 

CD, the wedge wall AE and the arcs 

BC and DE of the Mach circle whose 

center 0 moves along the wedge wall 

at a velocity equal to the velocity of 

flow L’s - u behind the shock wave 

AF, where Ii, is the velocity of the 

shock wave and c!J is the velocity of the 

shock wave relative to the flow behind it. 

We shall formulate the problem in the 

Ox’y’ coordinate system with its origin 

0 at the moving center of perturbations 

which coincides with the point of inter- 

Fig. 1 section of the bisector of the angle AFK 
with the wedge wall. In the system thus 

defined, the unperturbed gas within the region AFK will be at rest and the problem will 

be self-similar with respect to time t. Let us linearize the equations of a two-dimen- 

sional, unsteady motion of gas and introduce the following dimensionless variables : 

where u’, C’ and p' represent the perturbed velocity components and the pressure per- 

turbation, while a, and pi are the velocity of sound and the unperturbed density in the 

region 1. 

Let us write the equation of the perturbed shock wave front AF in the form 

x = k +$ (Y) 

For x = k, the relations at the shock wave AB become 

where a,, and V are the velocity of sound and the stream velocity in the region 0 , and 

D, and E, are known constants dependent on the perturbed parameters us, PO, p o and 

pain the region 0 ahead of the shock wave. 

Equations (1.1) can be written as 

u = A~,P + FI, y$-BIz for x=k (1.2) 

where F’i is a known constant and y is the ratio of specific heats. 

Analogous relations can be set up at the shock KF for y cos p - x sin p = k. 
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The flow in the region 2 is known and corresponds to a flow past a wedge at a velo- 

city V, - V,, where V, is the velocity of the wedge and V, is the velocity of flow 

behind the impinging shock wave. 
Constant parameter flows in the regions 3 and 4 are completely defined by writing 

the relations (1.1) on the slightly deviating rectilinear segments : 
of the shock wave.FB 

IL: = k - (Y - YF) tg El 

of the shock FC 
Y cos fi - J: sin B = k + (y - yF) ctg #I - 8s) 

together with the following condition of the weak tangential discontinuity FO 
for y = ztg 1/2 OO 

u,yF - t$xF = ll,y’F - t’ax 

(+ = k, yF = k tg ‘/se,, 0, = ‘12 n + p) 

on which the pressure and its derivatives are constant p’l. 
The above relations yield seven conditions defininf seven unknowns ua, uq, ~2, v4, 

e,, ~2 and p3 = p4, where Ed and E? denote small angles of deviation of the impinging 
shock wave and of the attached shock. 

2. Formulation of the problem for the function p . Lineariza- 

tion and the Chaplygin transformation reduce the problem to the Laplace’s equation for 
the pressure perturbation. The region corresponding to the diffraction region will map 

into an orthogonal curvilinear pentagon ABCDE on the plane z = r exp i 8 = p + iv 

bounded by four circular arcs and a straigh line (Fig.2). 
Boundary conditions for the normal and tangential partial pressure derivatives will be 

141 a$+b$=O 

Here 
a = fi ((3, O), b=1 on AB 

a = 0, b=l on BC and DE 

a = 6 (0, ed, b=l on CD 

a = 1, b=O on AE 
and 

6 (e, 0) = 
Jfl - k2 sec2 0 

6 (0, 6,) = 
1/l - k2 se9 (f3 - 0,) 

kAltg0-Blctgf.3 ’ k-4 tg (0 - eo) - B1 ctg (61 - eo) 
The respective equations of the circular arcs AB and CD have the form 

k (1 + r”) = 2r cos 8, k (I + 12) = 2r cost8 - e,) 

The coefficient a accompanying dr, / an becomes infinite at-the points x E AB, 

L and Q E CD , for 
ON = arc tg v/B1 I kAl, tk,Q = 8, T arc tg V-B, J kAl 

Integrating the second condition of (1.2) along the shock wave AB and considering 

that y = ktg0 for x = k,we obtain 
k-‘B, \ ctgedp= us---vuA 

A-B 

while the conditions which must hold along the shock CD have the form 

k-‘B, \ ct,g (f3 - 0,) dp = (uc - UJ cos p f (uc - vD) sin p 
C’o 

s dp = ~2 - ~a 
CD 

(2-l) 

(2.2) 
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Solution of the resulting boundary value problem is obtained by mapping the curvi- 
Linear pentagon ABCDE into the upper semiplane. 

3. Constructfon of the function mapping the curvilinear pen- 
tagon into the upper remiplane. Applying the bilinear transformation 

5 = 1 - (k + &) z 
z-k-_-k1 ’ 

kl = 1/i - k2 

we map the pentagon ABCDE into the second quadrant, from which a quarter of the 
unit circle with its center at the origin,and a half-circle of radius d with its center on 
the real axis at the distance of -C from the coordinate origin, are deleted (Fig. 3) 

d= kl k2+sinp 
k + k sin S - kl cos p ’ ‘= k+ksinp-klcosp 

The region obtained is then mapped into the upper semiplane by reflecting it into the 
first quadrant. The function which maps the region 

4y into the upper semiplane will be automorphic and 

Fig. 2 

given by the following analytic expression [S and 61: 

Fig. 3 

(3.1) 

Consequently o is an automorphic function with an associated bilinear substitution 

group. The substitutions are obtained from all possible products of the basic substitutions 

Another general expression for the mapping function (3.1) can be represented in the 
form 

(3.2) 

Let us find the coefficients j.k,and E,, by computing a number of possible products of 
the basic substitutions 
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E 
da 

17.19 = c -- 7 c fC4 
Ez1 = c - & , &3,25 = c - $4 

Em = c - A?_- 
cfC7 ’ 

Em.31 = c - &, E.33 = c - & 

d” 
pl=-- 

c2 ’ 
d4 

P3= -462, 
p5.7 - 

IlO 

p$ _ - d2 
-_ 

(c + GY ’ 
11.1’.,3= _&_ - d2 

P1 P.2 ps - (c + w 
b= - d= pLL1 - d= b3.25 _ - d2 

v4 (c f EJ2 ’ -jr = (c + w ’ Ps (c f Ed2 

-da k7 - d2 P= - da 

P7 - -(c + 47Y ” 

*= 

pa (c f Cd2 ” -pi- = (c + SD)2 

etc. The law of formation of the coefficients is obvious. Rate of convergence of the 
series is inversely proportional to the value of the parameter d / C which appears in 

(3. ‘2). 
The problem solved here is that of the flow past three cylinders whose radii are d, 1 

and G?. Function w (E) represents the complex velocity potential, pn denotes the doub- 
let strength and E,, is the coordinate enclosed by that doublet. Doublet image intensity 
decreases rapidly with decreasing d / c. Replacing in the expressions for CL, the squares 
with the cubes, we obtain the potential flow past three spheres. 

A particular case of this problem, namely, a flow past two spheres, has already been 
solved by Stokes who used the method of consecutive approximations and placed the 
doublets of the given strength p,, at the points of inversion f, relative to the two 
spheres [7]. 

Final expression for the function mapping the initial curvilinear pentagon into the 

upper, semiplane, has the form 
u) = f(Z) = _ ($ 

4. Formulation and solution of the Hilbert problem. Letusintro- 
duce the function 

P(W)++ 2.2 

regular in the upper semiplane w = T + io and satisfying the following condition on 
the real axis: 

Here 
a = 0, 

U(T)~fb(T)~=O 
b = 1, -oo <r < - (c + d)2 

a = 6 (Q, %I), b = 1, -(c + d)2<r<-(c - d)2 

a = 0, b = 1, -(c - d)2<T< - 1 

a =1, b = 0, --1<a (0 

a = f3(6, O), b = 1, o<r< 00 

and 
tg e = Im f-l W 

Re j-1 (q = h 0% 2 = f-1 (w) 

Coefficients a and b have first order discontinuities at the points -c = -1 andz = 0. 
In addition, the coefficient a has second order discontinuities at the points Z1 E (o,oo),Z, 
and ‘6, E (-(C f d)2, -(c - d)2) ; the points ~1, rs and r3 correspond to the points 
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N, L and Q in the z-plane. 
Substitution 

P(W)= ~ 
l/W (L + 1) P1 (W) -- 

where f/w (W $1) is any b ranch regular in the plane and with a cut on the real axis, 
removes the first order discontinuities at T = -1 and ‘G = 0 (see e.g. [4]). Hilbert 

problem is solved by reducing it to the Riemann’s problem and the points Q, TV and 7s 

become singular points [8 and 91. Consequently the order of the problem is x = 3 and 
the solution of the Hilbert problem with a second order zero at infinity, has the form 

P(w) = 
co t_ ClW + cg$ 

(w+ i)3 l/w(w + 1) esp= 
' 5 ln[[sfG (s)]-& 

Here -cc 

G (T) = 1, --oo<T<-(c +-d)” 

G (7) = @ (e, e,), -(c + dy<T<-(C- d)Z 

G (T) = 1, -(c - d)?<z<O 

G (.t) =O (0, 0), o<.t< 00 

@(e O)= l--i6(e,w 0 (0, f3,) = 
I - i6 (0, 00) 

, 1 + z* (0, 0) ’ 1 + i6 (9, 00) ’ 
tge = ~(‘6) 

In XG(z)=xln~+lnG(z) 

where In (‘6$-i) (a---i)-’ implies a branch which varies continuously along the real 
axis (including the point at infinity) with exception of a certain point q, E (-oo, 00) 
different from any of the points of discontinuity of the coefficients a and b, and 111 G(T) 
is defined by G (tn - 0) 

arg G (r,, + 0) = 0 (n = 1, 2, 3) 

The real constants cO, Cl and cs are found from the conditions (2.1) and (2.2). 
In the z-plane the solution has the form 

~+i$++i+(z)= co -k Cli (3) + C2f2 (z) 

(f (2) i- q3 v/r (2) (f (2) t 1) 

x 

+ 

r - contour ABCDE 

on AB (0 ( 8 ( e,, 8, = arc cos k) 

r exp ie = I?-~ (~0s 8 - fc02 8 - k2) exp ie 

on CD (0, - 8, c f3 < 8, + 0,) 

r exp ie = k-l (COS (e - e,) - VCOS~ (e - e,) - k2) exp ie 

and pressure is given by 
z 

p=Im 
SC 

W 

dz+p,=Im 5 (,g +ig)dw+p, 
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With the pressure determined, the remaining unknown functions can also be found in 
their closed form. For example, the form of the diffraction shock wave AB can be 
computed from (1.1) according to the formula 

u 

where 4 (ki) is known from the solution of the problem in region 4. 
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The most effective methods of generation and intensification of electromagnetic waves 
are based on the interaction of beams of charged particles with attenuating media, in 
which use is made of the fundamental effect of a charged particle stream on the medium 

properties, with the latter changing from a passive state absorbing radiation to an active 
one intensifying the electromagnetic field. In particular, the essential difference between 

a passive and an active medium is confirmed by the fact that theorems related to fluc- 

tuating dissipation applicable to absorbing media do not hold in the case of active ones. 
Hence, it is to be expected that the electromagnetic wave diffraction in active media 
will also take place in a different manner. 

Growth of the magnetic wave amplitude in an active medium is in fact limited by 

either nonlinear effects, or by the finite length of the system active section. In the latter 


