8. Chernyi, G.G., The effect of slight blunting of the front end of a body on highsupersonic flow past it. Izv. Akad. Nauk SSSR, OTN, N²4, 1958.
9. Cheng, H. K.. Similitude of hypersonic real gas flows over slender bodies with blunted noses. J. Aeronaut. Sci. Vol. 26, Ne9, 1960.
10. Sychev, V. V.. On the theory of of hypersonic gas flow with a power-law shock wave. PMM Vol. 24, N3. 1960.
11. Sychev, V.V.. On the small-perturbation method in problems of hypersonic flow past slender blunt bodies. PMTF N26, 1962.
12. Yakura, J. , The theory of entropy layers and nose bluntness in hypersonic flows. In collection: Hypersonic Flow Studies. Moscow, "Mir", 1964.
13. S edov, L. I. , Air motion in intense explosions. Dokl. Akad. Nauk SSSR Vol. 52. N11, 1946.
14. Sedov, L. I. , Propagation of strong waves of discontinuity. PMM Vol. 10, N22, 1946.
15. Taylor, G.I. . The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy. Soc. Ser. A Vol. 201, Ni1065, 1950.
16. Sedov. L. I. , Similarity and Dimensional Methods in Mechanics. Moscow, "Nauka", 1967.
17. Korobeinikov, V. P.. Mel'nikova, N.S. and Riazanov, E.V., The theory of Point Explosions. Moscow, Fizmatgiz, 1961.
18. Van Dyke, M. . Perturbation Methods in Fluid Mechanics. Moscow, "Mir", 1967. 19. Hayes, W. D. and Probstein, R. F. . Hypersonic Flow Theory. New YorkLondon, Academic Press, 1966.

Translated by A. Y.

DIFFRACTION OF A SHOCK WAVE ON A WEDGE

 MOVING AT SUPERSONIC SPEEDPMM Vol. 33. N4, 1969. pp. 631-637

K. A. BEZHANOV
(Moscow)
(Received March 28, 1969)
We investigate the differentiation of a shock wave of an arbitrary intensity on the upper surface of a wedge moving at supersonic speed under the assumption that the difference between the intensities of the shock wave and the attached shock as well as the difference between the wedge angle α and the angle of incidence of the shock wave δ are both small (Fig. 1).

The case of a flow when a plane shock wave impinges on a wedge moving at supersonic speed and diffraction is absent, was dealt with in [1]. In the present paper we obtain condjtions under which a constant parameter flow is realized in the region AFK bounded by the impinging shock wave, the attached shock and the wedge wall.

Diffraction of a shock wave of arbitrary intensity on a slender wedge moving at supersonic speed was dealt with in [2]. Paper [3] was concerned with the diffraction of a weak wave on a slender wedge moving at hypersonic speed. In addition, diffraction of a weak wave on an arbitrary wedge moving at supersonic speed was the theme of a Candidate's

Dissertation of S.M. Ter-Minasiants entitled "Diffraction of a plane wave on a wedge moving at supersonic speed", MGU, 1967.

1. Statement of the problem. Superposition of perturbations on a constant parameter flow yields a diffraction pattern bounded by the shock wave $A B$, the shock $C D$, the wedge wall $A E$ and the arcs

Fig. 1 $B C$ and $D E$ of the Mach circle whose center O moves along the wedge wall at a velocity equal to the velocity of flow $U_{0}-U$ behind the shock wave $A F$, where U_{0} is the velocity of the shock wave and U is the velocity of the shock wave relative to the flow behind it. We shall formulate the problem in the $O x^{\prime} y^{\prime}$ coordinate system with its origin O at the moving center of perturbations which coincides with the point of intersection of the bisector of the angle $A F K$ with the wedge wall. In the system thus defined, the unperturbed gas within the region $A F K$ will be at rest and the problem will be self-similar with respect to time t. Let us linearize the equations of a two-dimensional, unsteady motion of gas and introduce the following dimensionless variables:

$$
u=\frac{u^{\prime}}{a_{1}}, \quad v=\frac{r^{\prime}}{a_{1}}, \quad p=\frac{p^{\prime}}{a_{1}^{2} \rho_{1}}, \quad x=\frac{x^{\prime}}{a_{1} t}, \quad y=-\frac{y^{\prime}}{a_{1} t}
$$

where u^{\prime}, v^{\prime} and p^{\prime} represent the perturbed velocity components and the pressure perturbation, while a_{1} and ρ_{1} are the velocity of sound and the unperturbed density in the region 1.

Let us write the equation of the perturbed shock wave front $A F$ in the form

$$
x=k+\psi(y)
$$

For $x=k$, the relations at the shock wave $A B$ become

$$
\begin{gather*}
u=\frac{2}{\gamma+1} \frac{\left(M_{0}-M\right)^{2}+1}{\left(M_{0}-M\right)^{2}}\left(\psi(y)-y \psi^{\prime}(y)\right)+D_{1} \tag{1.1}\\
v=\left(k-m\left(M M_{0}-M\right)\right) \psi^{\prime}(y)-v_{0}, \quad p-\frac{\ell k}{\gamma+1}\left(\psi(y)-y \psi^{\prime}(y)\right)+E_{1} \\
\left(M_{0}=\frac{U_{0}}{a_{0}}, M=\frac{V}{a_{0}}, k=\frac{U}{a_{1}}, m=\frac{a_{0}}{a_{1}}\right)
\end{gather*}
$$

where a_{0} and V are the velocity of sound and the stream velocity in the region O, and D_{1} and E_{1} are known constants dependent on the perturbed parameters $u_{0}, \nu_{0}^{\prime}, \rho_{0}$ and p_{0} in the region O ahead of the shock wave.

Equations (1.1) can be written as

$$
\begin{gather*}
u=A_{1} p+F_{1}, \quad y \frac{\partial v}{\partial y}=B_{1} \frac{\partial p}{\partial y} \quad \text { for } \quad x=k \tag{1.2}\\
A_{1}=\frac{\left(M_{0}-M\right)^{2}+1}{2 k\left(M_{0}-\bar{M}\right)^{2}}, \quad B_{1}=\frac{r+1}{2} \frac{\left(M_{0}-M\right)^{2}-1}{(r-1)\left(M_{0}-M\right)^{2}+2}
\end{gather*}
$$

where F_{1} is a known constant and γ is the ratio of specific heats.
Analogous relations can be set up at the shock $K F$ for $y \cos \beta-x \sin \beta=k$.

The flow in the region 2 is known and corresponds to a flow past a wedge at a velocity $V_{2}-V_{1}$, where V_{1} is the velocity of the wedge and V_{2} is the velocity of flow behind the impinging shock wave.

Constant parameter flows in the regions 3 and 4 are completely defined by writing the relations (1.1) on the slightly deviating rectilinear segments:
of the shock wave $F B$

$$
x=k-\left(y-y_{F}\right) \operatorname{tg} \varepsilon_{1}
$$

of the shock $F C$

$$
y \cos \beta-x \sin \beta=k+\left(y-y_{F}\right) \operatorname{ctg}\left(\beta-\varepsilon_{2}\right)
$$

together with the following condition of the weak tangential discontinuity $F O$
for $y=x \operatorname{tg}{ }^{1 / 2} \theta_{0} \quad u_{3} y_{F}-v_{3} x_{F}=u_{4} y_{F}^{*}-v_{4} x$

$$
\left(x_{F}=k, y_{F}=k \operatorname{tg}{ }^{1} / 2 \theta_{0}, \theta_{0}=1 / 2 \pi+\beta\right)
$$

on which the pressure and its derivatives are constant [2].
The above relations yield seven conditions defininf seven unknowns $u_{3}, u_{4}, v_{3}, v_{4}$, $\varepsilon_{1}, \varepsilon_{2}$ and $p_{3}=p_{4}$, where ε_{1} and ε_{2} denote small angles of deviation of the impinging shock wave and of the attached shock.
2. Formulation of the problem for the function p. Linearization and the Chaplygin transformation reduce the problem to the Laplace's equation for the pressure perturbation. The region corresponding to the diffraction region will map into an orthogonal curvilinear pentagon $A B C D E$ on the plane $z=r \exp i \theta=\mu+i v$ bounded by four circular arcs and a straigh line (Fig. 2).

Boundary conditions for the normal and tangential partial pressure derivatives will be [4]

$$
a \frac{\partial p}{\partial n}+b \frac{\partial p}{\partial s}-0
$$

Here

$$
\begin{array}{lll}
a=\vartheta(\theta, 0), & b=1 & \text { on } A B \\
a=0, & b=1 & \text { on } B C \text { and } D E \\
a=\vartheta\left(\theta, \theta_{0}\right), & b=1 & \text { on } C D \\
a=1, & b=0 & \text { on } A E
\end{array}
$$

and

$$
\vartheta(\theta, 0)=\frac{\sqrt{1-k^{2} \sec ^{2} \theta}}{k A_{1} \operatorname{tg} \theta-B_{1} \operatorname{ctg} \theta}, \quad \vartheta\left(\theta, \theta_{0}\right)-\frac{\sqrt{1-k^{2} \sec ^{2}\left(\theta-\theta_{0}\right)}}{k A_{1} \operatorname{tg}\left(\theta-\theta_{0}\right)-B_{1} \operatorname{ctg}\left(\theta-\theta_{0}\right)}
$$

The respective equations of the circular arcs $A B$ and $C D$ have the form

$$
k\left(1+r^{2}\right)=2 r \cos 0, \quad k\left(1+r^{2}\right)=2 r \cos \left(\theta-\theta_{0}\right)
$$

The coefficient a accompanying $\partial p / \partial n$ becomes infinite at the points $N \in A B$, L and $Q \in C D$, for $\quad \theta_{N}=\operatorname{arctg} \sqrt{B_{1} / k A_{1}}, \quad \theta_{L, Q}=\theta_{0} \mp \operatorname{arctg} \sqrt{B_{1} / k A_{1}}$

Integrating the second condition of (1.2) along the shock wave $A B$ and considering that $y=k \operatorname{tg} \theta$ for $x=k$, we obtain $k^{-1} B_{1} \int_{A B} \operatorname{ctg} \theta d p=v_{B}-v_{A}$
while the conditions which must hold along the shock $C D$ have the form

$$
\begin{gather*}
k^{-1} B_{1} \int_{C D} \operatorname{ctg}\left(\theta-\theta_{0}\right) d p=\left(u_{C}-u_{D}\right) \cos \beta+\left(v_{C}-v_{D}\right) \sin \beta \tag{2.2}\\
\int_{C D} d p=p_{2}-p_{3}
\end{gather*}
$$

Solution of the resulting boundary value problem is obtained by mapping the curvilinear pentagon $A B C D E$ into the upper semiplane.
3. Construction of the function mapping the curvilinear pentagon into the upper semiplane. Applying the bilinear transformation

$$
\zeta=\frac{1-\left(k+i k_{1}\right) z}{z-k-i k_{1}}, \quad k_{1}=\sqrt{1-k^{2}}
$$

we map the pentagon $A B C D E$ into the second quadrant, from which a quarter of the unit circle with its center at the origin, and a half-circle of radius d with its center on the real axis at the distance of $-c$ from the coordinate origin, are deleted (Fig. 3)

$$
d=\frac{k_{1}}{k+k \sin \beta-k_{1} \cos \beta}, \quad c=\frac{k^{2}+\sin \beta}{k+k \sin \beta-k_{1} \cos \beta}
$$

The region obtained is then mapped into the upper semiplane by reflecting it into the first quadrant. The function which maps the region

Fig. 2 into the upper semiplane will be automorphic and

Fig. 3
given by the following analytic expression [5 and 6]:

$$
\begin{equation*}
\omega=\frac{\zeta}{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{\alpha_{n} z+\beta_{n}}{r_{n} z+\delta_{n}}-\frac{\alpha_{n}}{\beta_{n}}\right) \tag{3.1}
\end{equation*}
$$

Consequently ω is an automorphic function with an associated bilinear substitution group. The substitutions are obtained from all possible products of the basic substitutions

$$
\left\|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right\|, \quad\left\|\begin{array}{ll}
c & d^{2}-c^{2} \\
1 & -c
\end{array}\right\|, \quad\left\|\begin{array}{cc}
-c & d^{2}-c^{2} \\
1 & c
\end{array}\right\|
$$

Another general expression for the mapping function (3.1) can be represented in the form

$$
\begin{gather*}
\omega=\frac{1}{2}\left(\zeta+\frac{1}{\zeta}\right)+\frac{d^{2} \zeta}{\zeta^{2}-c^{2}}+\sum_{n=11}^{\infty} \frac{\mu_{n} \zeta}{\zeta^{2}-\xi_{n}^{2}} \tag{3.2}\\
\xi_{n}=\frac{\delta_{n}}{r_{n}}, \quad \mu_{n}=\frac{\beta_{n} \gamma_{n}-\alpha_{n} \delta_{n}}{r_{n}^{2}} \quad(n=0,1,2, \ldots)
\end{gather*}
$$

Let us find the coefficients μ_{n} and ξ_{n} by computing a number of possible products of

$$
\begin{aligned}
& \text { the basic substitutions } \\
& \qquad \begin{aligned}
\xi_{0}=\frac{1}{c}, \quad \xi_{2 n}=\frac{1}{\xi_{2 n-1}}, & \mu_{0}--\frac{d^{2}}{c^{2}}, \quad \mu_{2 n}--\frac{\mu_{2 n-1}}{\xi_{2 n-1}^{2}}(n-1,2, \ldots) \\
\xi_{1}=c-\frac{d^{2}}{c}, & \xi_{3}=c-\frac{d^{2}}{2} c, \quad \xi_{5,7}=c-\frac{d^{2}}{c \pm \xi_{0}} \\
\xi_{9}=c-\frac{d^{2}}{c+\xi_{1}}, & \xi_{11,13}=c-\frac{d^{2}}{c \pm \xi_{2}}, \quad \xi_{15}=c-\frac{d^{2}}{c+\xi_{3}}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\xi_{17,19} & =c-\frac{d^{2}}{c \pm \xi_{4}}, & \xi_{21} & =c-\frac{d^{2}}{c+\xi_{5}}, \\
\xi_{27} & =c-\frac{\xi_{33,25}}{c+\xi_{7}}, & \xi_{29,31} & =c-\frac{d^{2}}{c \pm \xi_{8}}, \\
\mu_{1} & =-\frac{d^{2}}{c \pm \xi_{6}} \\
c^{2} & & \xi_{33} & =c-\frac{d^{2}}{c+\xi_{9}} \\
\frac{\mu_{9}}{\mu_{1}} & =\frac{-d^{2}}{\left(c+\xi_{1}\right)^{2}}, & \frac{\mu_{17,19}}{\mu_{2}} & =\frac{-d_{3}}{\mu_{4}}
\end{array}
$$

etc. The law of formation of the coefficients is obvious. Rate of convergence of the series is inversely proportional to the value of the parameter d / c which appears in (3.2).

The problem solved here is that of the flow past three cylinders whose radii are $d, 1$ and d. Function $\omega(\xi)$ represents the complex velocity potential, μ_{n} denotes the doublet strength and $\breve{\varsigma}_{n}$ is the coordinate enclosed by that doublet. Doublet image intensity decreases rapidly with decreasing d / c. Replacing in the expressions for μ_{n} the squares with the cubes, we obtain the potential flow past three spheres.

A particular case of this problem, namely, a flow past two spheres, has already been solved by Stokes who used the method of consecutive approximations and placed the doublets of the given strength μ_{n} at the points of inversion ξ_{n} relative to the two spheres [7].

Final expression for the function mapping the initial curvilinear pentagon into the upper, semiplane, has the form

$$
w=f(z)=-\omega^{2}\left(\frac{1-\left(k+i k_{1}\right) z}{z-k-i k_{1}}\right)
$$

4. Formulation and solution of the Hilbert problem. Let us intro-

 duce the function$$
P(w)=\frac{\partial p}{\partial \sigma}+i \frac{\partial p}{\partial \tau}
$$

regular in the upper semiplane $w=\tau+i \sigma$ and satisfying the following condition on the real axis:

$$
a(\tau) \frac{\partial p}{\partial \sigma}+b(\tau) \frac{\partial p}{\partial \tau}=0
$$

Here

$$
\begin{array}{llr}
a=0, & b=1, & -\infty<\tau<-(c+d)^{2} \\
a=\vartheta\left(\theta, \theta_{0}\right), & b=1, & -(c+d)^{2}<\tau<-(c-d)^{2} \\
a=0, & b=1, & -(c-d)^{2}<\tau<-1 \\
a=1, & b=0, & -1<\tau<0 \\
a=\vartheta(\theta, 0), & b=1, & 0<\tau<\infty
\end{array}
$$

and

$$
\operatorname{tg} \theta=\frac{\operatorname{Im} f^{-1}(\tau)}{\operatorname{Re} f^{-1}(\tau)}=\lambda(\tau), \quad z=f^{-1}(w)
$$

Coefficients a and b have first order discontinuities at the points $\tau=-1$ and $\tau=0$. In addition, the coefficient a has second order discontinuities at the points $\tau_{1} \in(0, \infty), \tau_{2}$ and $\tau_{3} \models\left(-(c+d)^{2},-(c-d)^{2}\right)$; the points τ_{1}, τ_{2} and τ_{3} correspond to the points
N, L and Q in the z-plane.
Substitution

$$
P(w)=\frac{1}{\sqrt{w(w+1)}} P_{1}(w)
$$

where $\sqrt{w(w+1)}$ is any branch regular in the plane and with a cut on the real axis, removes the first order discontinuities at $\tau=-1$ and $\tau=0$ (see e.g. [4]). Hilbert problem is solved by reducing it to the Riemann's problem and the points τ_{1}, τ_{2} and τ_{3} become singular points [8 and 9]. Consequently the order of the problem is $x=3$ and the solution of the Hilbert problem with a second order zero at infinity, has the form

Here

$$
P(w)=\frac{c_{0}+c_{1} w+c_{2} r^{2}}{(w+i)^{3} \sqrt{w(w+1)}} \exp \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \ln \left[\left(\frac{s+i}{s-i}\right)^{x} G(s)\right] \frac{d s}{s-w}
$$

$$
\begin{aligned}
G(\tau) & =1, & -\infty<\tau<-(c+d)^{2} \\
G(\tau) & =\Theta\left(\theta, \theta_{0}\right), & -(c+d)^{2}<\tau<-(c-d)^{2} \\
G(\tau) & =1, & -(c-d)^{2}<\tau<0 \\
G(\tau) & =\Theta(\theta, 0), & 0<\tau<\infty \\
\Theta(\theta, 0) & =\frac{1-i \vartheta(\theta, 0)}{1+i \vartheta(\theta, 0)}, & \Theta\left(\theta, \theta_{0}\right)=\frac{1-i \vartheta\left(\theta, \theta_{0}\right)}{1+i \vartheta\left(\theta, \theta_{0}\right)}, \quad \operatorname{tg} \theta=\lambda(\tau) \\
& \ln \left(\frac{\tau+i}{\tau-i}\right)^{\alpha} & G(\tau)=x \ln \frac{\tau+i}{\tau-i}+\ln G(\tau)
\end{aligned}
$$

where $\ln (\tau+i)(\tau-i)^{-1}$ implies a branch which varies continuously along the real axis (including the point at infinity) with exception of a certain point $\tau_{0} \in(-\infty, \infty)$ different from any of the points of discontinuity of the coefficients a and b, and $\ln G(\tau)$ is defined by

$$
\arg \frac{G\left(\boldsymbol{\tau}_{n}-0\right)}{G\left(\tau_{n}+0\right)}=0 \quad(n=1,2,3)
$$

The real constants c_{0}, c_{1} and c_{2} are found from the conditions (2,1) and (2.2). In the z-plane the solution has the form

$$
\begin{gathered}
\frac{\partial p}{\partial v}+i \frac{\partial p}{\partial \mu}=\left(\frac{\partial p}{\partial \sigma}+i \frac{\partial p}{\partial \tau}\right) f^{\prime}(z)=\frac{c_{0}+c_{1} f(z)+c_{2} f^{2}(z)}{\langle f(z)+i)^{2} \sqrt{f(z)(f(z)+1)}} \times \\
\times f^{\prime}(z)\left(\exp \frac{3}{2 \pi i} \int_{\Gamma} \ln \frac{f(s)+i}{f(s)-i} \frac{f^{\prime}(s) d s}{f(s)-f(z)}+\right. \\
\left.+\exp \frac{1}{2 \pi i} \int_{A B} \ln \Theta(\theta, 0) \frac{f^{\prime}(s) d s}{f(s)-f(z)}+\exp \frac{1}{2 \pi i} \int_{C^{\prime}}^{0} \ln \Theta\left(\theta, \theta_{0}\right) \frac{f^{\prime}(s) d s}{f(s)-f(z)}\right) \\
I-\text { contour } A B C D E
\end{gathered}
$$

$$
\text { on } A B\left(0<\theta<\theta_{1}, \theta_{1}=\operatorname{arc} \cos k\right)
$$

$$
r \exp i \theta=k^{-1}\left(\cos \theta-\sqrt{\cos ^{2} \theta-k^{2}}\right) \exp i \theta
$$

$$
\text { on } C D\left(\theta_{0}-\theta_{1}<\theta<\theta_{0}+\theta_{1}\right)
$$

$$
r \exp i \theta=k^{-1}\left(\cos \left(\theta-\theta_{0}\right)-\sqrt{\left.\cos ^{2}\left(\theta-\theta_{0}\right)-k^{2}\right)} \exp i \theta\right.
$$

and pressure is given by

$$
p=\operatorname{Im} \int_{1}^{z}\left(\frac{\partial p}{\partial v}+i \frac{\partial p}{\partial \mu}\right) d z+p_{2}=\operatorname{Im} \int_{-1}^{w}\left(\frac{\partial p}{\partial \sigma}+i \frac{\partial p}{\partial \tau}\right) d w+p_{2}
$$

With the pressure determined, the remaining unknown functions can also be found in their closed form. For example, the form of the diffraction shock wave $A B$ can be computed from (1.1) according to the formula

$$
\psi(y)=\frac{(\gamma+1)\left(y-k_{1}\right)}{4 k k_{1}} E_{1}+\frac{\psi\left(k_{1}\right)}{k_{1}} y-\frac{\gamma+1}{4 k} y \int_{k_{1}}^{y} s^{-2} p(s) d s
$$

where $\psi\left(k_{1}\right)$ is known from the solution of the problem in region 4.

BIBLIOGRAPHY

1. Golubinskii, A. I., Impingement of a shock wave on a wedge moving at supersonic speed. PMM Vol. 28, №4, 1964.
2. Smyr1, J. L., The impact of a shock wave on a thin two-dimensional aerofoil moving at supersonic speed. J. Fluid Mech., Vol. 15, p. 2, 1963.
3. Inger, G.R.. Blast wave impingement on a slender wedge moving at hypersonic speeds. AIAA Journal, Vol. 4, №3, 1966.
4. Bezhanov, K. A., On the theory of diffraction of shock waves. PMM Vol. 24, №4, 1960.
5. Golubev, V. V., Lectures on the Analytical Theory of the Differential Equations. M. -L., Gostekhizdat, 1950.
6. Golubev, V. V., Singlevalued Analytical Functions, Automorphic Functions. M., Fizmatgiz, 1961.
7. Lamb, H., Hydrodynamics. Cambridge, 1955.
8. Gakhov, F. D. , Boundary Value Problems. M., Fizmatgiz, 1963.
9. Muskhelishvili, N. I. . Singular Integral Equations. Boundary Value Problems in the Theory of Functions and Their Certain Applications in the Mathematical Physics. M., "Nauka". 1968.

Translated by L. K.

ON THE THEORY OF ELECTROMAGNETIC WAVE DIFFRACTION IN ACIIVE MEDIA

PMM Vol. 33, N.4, 1969, pp. 638-647
S.s. KALMYKOVA and V. I, KURILKO
(Khar'kov)
(Received July 9, 1968)
The most effective methods of generation and intensification of electromagnetic waves are based on the interaction of beams of charged particles with attenuating media, in which use is made of the fundamental effect of a charged particle stream on the medium properties, with the latter changing from a passive state absorbing radiation to an active one intensifying the electromagnetic field. In particular, the essential difference between a passive and an active medium is confirmed by the fact that theorems related to fluctuating dissipation applicable to absorbing media do not hold in the case of active ones. Hence, it is to be expected that the electromagnetic wave diffraction in active media will also take place in a different manner.

Growth of the magnetic wave amplitude in an active medium is in fact limited by either nonlinear effects, or by the finite length of the system active section. In the latter

